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Abstract
Current adversarial defense methods for GNNs exhibit critical limi-

tations obstructing real-world application: 1) inadequate adaptabil-
ity to graph heterophily, 2) absent generalizability to early GNNs

like GraphSAGE used downstream, and 3) low inference scalability

unacceptable for resource-constrained scenarios. To simultaneously

address these challenges, we propose the first online GNN-MLP dis-

tillation framework PROSPECT, which merges the complementary

knowledge of MLP and GNN and can thus learn GNN and MLP

robust against adversarial structure attacks on both homophilic

and heterophilic graphs. PROSPECT integrates seamlessly into

GraphSAGE and achieves inference scalability exponentially higher

than conventional GNNs. To mitigate potential convergence fail-

ure caused by inductive bias conflicts between the heterogeneous

MLP and GNN, we propose the Quasi-Alternating Cosine Anneal-

ing (QACA) learning rate scheduler, inspired by our convergence

analysis of the involved MLP. Experiments on homophilic and het-

erophilic graphs demonstrate the advantages of PROSPECT over

current defenses and offline GNN-MLP distillationmethods in terms

of adversarial robustness and clean accuracy, the inference scal-

ability of PROSPECT orders of magnitude higher than existing

defenses, and the effectiveness of QACA.
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1 Introduction
Graph (network) data are ubiquitous today, playing a fundamental

role across disciplines including computer science [13] and social

science [4]. In recent years, GNNs [17, 23, 51] have emerged as

the most promising tools for graph data analysis. GNNs have been

utilized in a wide array of domains, such as drug discovery [21],

network routing [41], financial risk management [28], e-commerce

[59], social media [34], and recommendation systems [15]. Despite

their enormous success, GNNs have been shown susceptible, like

other deep learning models, to malicious data perturbations known

as adversarial attacks [10, 60, 61]. The key distinction between

GNNs and non-graph models lies in the graph structure that con-

nects entities. This also differentiates the study of adversarial at-

tacks and robustness in GNNs. Perturbing the graph structure is

more harmful than altering node features, as edges affect all feature

dimensions and feature manipulations can be mitigated by GNN

Neighborhood Aggregation [50]. Thus, we focus on adversarial

robustness against structure attacks, which are classified into two

types based on their occurrence stages: 1) evasion attacks during

inference/testing, and 2) poisoning attacks during training.
As graph attacks alter properties such as homophily

1
, many de-

fenses (e.g., purification defenses) detect and counter adversarial

attacks by identifying these induced changes. Entezari et al. [14]

find Nettack [60] substantially impacts high-rank adjacency singu-

lar components, motivating low-rank approximation as the clean

graph. Wu et al. [50] observe that attacks insert heterophily, in-

spiring purification based on Jaccard similarity [20] between node

pairs. Similarly, GNNGuard [55] prunes the edges linking dissimilar

nodes at every layer. Jin et al. [22] summarize these findings into

that real-world clean graphs should admit sparsity, smoothness

(i.e., homophily), and low rankness, and accordingly propose to

learn such graphs while training GNNs. Leveraging graph con-

trastive learning [29, 46], STABLE [25] learns node features robust

1
Heterophily/homophily means that neighboring nodes tend to have different/similar

labels and features
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to structure perturbations and then refines the graph according to

node feature similarities. Although these methods are robust on ho-

mophilic graphs, their performance on heterophilic graphs has not

been studied. In principle, these robust mechanisms designed for

homophilic graphs are difficult to effectively adapt to heterophilic

graphs, as demonstrated by [11] and our experiments.

Different from the above structure purification methods, some

works develop heterophily-aware GNNs to handle heterophily in-

herent in the graph itself or caused by attacks. Zhu et al. [57]

show heterophilic GNNs like H2GCN [58] are more robust than

homophilic GNNs such as GCN [23] and GAT [45]. Lei et al. [24]

propose EvenNet to generalize across different homophily levels

and thus defend attacks. However, these robust heterophilic GNNs

are designed ad-hoc. Thus downstream GNNs used in recommenda-

tion [18, 53] or security [39] cannot benefit, since they commonly

build on simple GNNs like GraphSAGE (SAGE) [17]. In addition

to heterophilic GNNs, the purification method GARNET [12] esti-

mates a highly homophilic structure through the top-𝑘 dominant

adjacency singular components. It does not rely on homophily

prior but depends on the 𝑘-truncated singular value decomposition

(𝑘-TSVD), which is impractical for scaling to large graphs.

Beyond adversarial robustness, inference speed is also critical

for industrial applications. GNNs often exhibit prohibitive latency

due to their graph dependency, as adding layers necessitates ag-

gregating information from increasingly distant neighbors. This is

expensive as inference for one node in an 𝐿-layer SAGE incurs an

exponential complexity of O(𝐷𝐿), given the average node degree

𝐷 . To overcome this barrier, offline GNN-MLP distillation methods

[43, 54] transfer knowledge from GNNs to MLPs for fast inference.

However, the capabilities of offline GNN-MLPs are constrained by

the GNN teacher and the unidirectional knowledge transfer. More-

over, these offline methods are vulnerable to structure poisoning

attacks, as evidenced by our experiments (Section 5).

We now summarize that previous defenses are less or more

challenged by the problems below.

• Inadequate heterophily adaptability. Most of purifica-

tion defenses do not consider inherent heterophily and thus

exhibit deficient adaptability to heterophilic graphs.

• Absent generalizability. The robustness mechanisms of

heterophilic GNNs are ad hoc, lacking generalizability to the

downstream models built on early GNNs.

• High inference latency. All current defenses inference
with graph structure. So like most GNNs, the inference la-

tency is too high to handle high-pressure situations.

In response to the aforementioned limitations, this paper intro-

duces a novel online bidirectional GNN-MLP knowledge distillation

method that integrates the knowledge of two heterogeneous mod-

els, specifically MLP and GNN. This fusion of knowledge allows for

adaptability to graph heterophily, enhances adversarial robustness,

generalizes well to naive SAGE, and maintains the same inference

scalability as MLP. The key motivation underneath is that hetero-

geneous models like MLP and GNN emphasize different aspects of

graph data (node features versus graph structure), thus providing

complementary information. As illustrated in Table 1, MLP and

SAGE have distinct sets of correct predictions on both clean and

Table 1: MLP and SAGE have complementary knowledge.
The test accuracy (%) on (poisoned) homophilic Cora and
heterophilic UAI is reported. The datasets are chosen from
Section 5.2. The MLP-SAGE row corresponds to the union of
correct predictions from SAGE and MLP.

Cora Cora-Meta-15 UAI UAI-Meta-15

MLP 59.96 59.96 61.08 61.08

SAGE 83.50 71.38 55.09 41.24

MLP-SAGE 88.68 82.80 70.09 66.91

attacked graph data, resulting in a significantly larger union of cor-

rect predictions than either model alone. MLP is better than SAGE

on clean heterophilic UAI, and the performance gap is widened

under MetaAttack [61]. This implies that the knowledge from MLP

is beneficial to GNN, but traditional GNNs and offline GNN-MLP

distillation methods cannot transfer the knowledge from MLP to

GNN. To bridge this gap, we propose incorporating MLP-to-GNN

knowledge distillation, leading to our mutual and online GNN-MLP

distillation framework PROSPECT.

Transferring MLP knowledge to GNN through mutual distil-

lation appears feasible, but in practice, we find it difficult due to

the significant differences in inductive bias between heterogeneous

models. Since the MLP’s prediction results Z𝑚 do not contain graph

structural information, they usually differ significantly from the

GNN’s prediction results Z𝑔 . When Z𝑚 and Z𝑔 , which differ con-

siderably, are used as distillation targets for each other, the entire

system is pulled in two different directions, leading to optimization

difficulties. To address these issues, we analyze the convergence

conditions of Prospect-MLP in Theorem 1 and propose the quasi-

alternating cosine annealing (QACA) learning rate scheduler.

Our method PROSPECT is the first online and mutual GNN-

MLP distillation framework to learn GNNs and MLPs RObust
againSt graPh advErsarial struCture atTacks. We denote the en-

gaged MLP and GNN as Prospect-MLP and Prospect-GNN, respec-

tively, while referring to the corresponding instance that employs

SAGE [17] as Prospect-SAGE. Our main contributions can be sum-

marized as follows.

• As far as we are aware, we propose the first online GNN-MLP

distillation framework PROSPECT, which incorporates an ad-

versarial robustness mechanism catering to both homophilic

and heterophilic graphs, enables seamless integration with

SAGE, and achieves inference scalability orders of magnitude

higher than conventional GNNs.

• To the best of our knowledge, we are the first to investigate

the adversarial robustness of GNN-MLP distillation meth-

ods, revealing the vulnerability of previous offline ones to

poisoning attacks. In contrast, the proposed online and mu-

tual GNN-MLP framework PROSPECT is robust against both

evasion and poisoning structure attacks.

• We discover the optimization challenges that heterogeneous

GNN-MLP mutual distillation may face, and analyze the

convergence of Prospect-MLP in Theorem 1. Inspired by this

analysis, we design the QACA learning rate scheduler.
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• Experiments on five homophilic and three heterophilic graphs

not only validate the effectiveness of QACA but also demon-

strate the superior adversarial robustness, clean accuracy,

heterophily adaptability, and inference scalability of PROSPECT

over baselines.

2 Related Work and Notations
2.1 GNN Defense Methods
Previous adversarial defenses fall into four types. 1) Adversar-
ial training. Perturbing the clean adjacency matrix with random

flips [10], gradient projection descent [52], or Nettack [7] during

training can confer some evasion attack robustness. But it may

impede training efficiency, fail to withstand poisoning attacks, and

risk clean accuracy vs robustness trade-offs [35]. 2) Preprocess
purification. The susceptible components, like high-rank adja-

cency components [14] or dissimilar connections [50], are removed

before training/inference. GARNET [11], which estimates the clean

graph based on top-𝑘 largest singular components that are hardly

affected by adversarial attacks, partially addresses the heterophily

adaptation problem. But its scalability is limited by the 𝑘-TVSD.

3) Learning purification. Learning clean graphs during training

can be done by assigning low propagation weights for suscepti-

ble elements [56], attenuating edges connecting dissimilar nodes

[55], optimizing a dense adjacency matrix towards the properties of

clean homophilic graphs [22], and extracting robust node features

for subsequent reconstruction [25]. 4) Heterophilic design.Many

attack algorithms, e.g., [60, 61], insert heterophily into homophilic

graphs [22, 25, 50, 55, 57], to degrade homophilic GNNs. In contrast,

GNNs designed for heterophilic graphs, including H2GCN [58] and

EvenNet [24], can more or less adapt to the altered homophily lev-

els. Hence, they exhibit some inherent robustness against current

adversarial attacks [57].

Compared to type 1 models, PROSPECT defends against both

poisoning and evasion attacks without any potential accuracy-

robustness trade-offs. Unlike types 2 and 3, PROSPECT inherently

adapts to heterophily, requiring no additional purification costs and

incurring minimal training overhead. Versus type 4, PROSPECT

enables integration with simple GNNs [18, 34, 53] used downstream,

rather than being ad-hoc. And unlike all four types, PROSPECT

has an inference scalability as high as MLPs. Most crucially, the

adversarial robustness of PROSPECT stems from the knowledge

fusion without any assumptions, basically suitable for any graph

and any structure attacks.

2.2 GNN-MLP Distillation
PROSPECT pioneers online andmutual GNN-MLP distillation frame-

works, versus offline and unidirectional ones like GLNN [54] and

NOSMOG [43]. GLNN transfers the GNN knowledge learned from

the graph structure and node features to MLPs that rely on no graph

structures, by matching the temperatured logits [19, 38]. Such de-

sign is, however, shown unable to align the input node feature to

the label space fully, resist node feature noises, and capture the

soft structural representational similarity among nodes. To address

these problems, NOSMOG incorporates the structure embeddings,

e.g., DeepWalk [37], into node features, distills the relative node

similarity [44], and employs Project Gradient Descent adversarial

training (PGD-AT) [31] on node features to tackle noises.

The differences between these offlineGNN-MLPs and PROSPECT

are as follows. 1) GLNN and NOSMOG are vulnerable to poison-

ing structure and evasion node feature attacks, while PROSPECT

resists both poisoning and evasion structure attacks. 2) The perfor-
mance of offline methods is constrained by the pre-trained teachers,

whereas PROSPECT transcends this limit through mutual distilla-

tion. 3) PROSPECT simultaneously trains robust GNNs and MLPs

in one phase, avoiding the complex two-phase of offline distillation.

4) PROSPECT concerns the structure adversarial robustness, which

is neglected by NOSMOG but more destructive and prevalent in

the graph machine learning context.

2.3 Notations
Given an undirected and connected graph G = (V, E) consisting
of 𝑁 nodes V = {1, · · · , 𝑁 } and𝑀 = |E | edges , we denote the ad-
jacency and degree matrices respectively by A and D = diag (A · 1),
wherein 1 is an all-one column vector with appropriate length and

diag (r) generates a diagonal matrix taking vector r as the diagonal.
SinceA summaries the structure information inV and E, the graph
data with node feature matrix X can be comprehensively described

by the tuple G = (A,X), where the 𝑖-th row of X∈ R𝑁×𝑑
is the

transpose of 𝑑-dimensional node feature column vector of the 𝑖-th

node.

Real-world graphs often exhibit varying degrees of homophily,

which significantly impacts the GNN (and defense) performance.

There are various ways to quantify homophily [27, 36, 58], and we

adopts the most widely accepted one [58] described in Definition 1,

following [57].

Definition 1. (homophily ratio, HR) Given a 𝑁 -node graph G =

(V, E) and node label vector y ∈ R𝑁 , the edge-based homophily
ratio is defined as the fraction of edges linking same-label nodes

ℎ(G, y) = 1

|E |
∑︁

(𝑖, 𝑗 ) ∈E
1(𝑦𝑖 , 𝑦 𝑗 ), (1)

where 1(𝑦𝑖 , 𝑦 𝑗 ) = 1 when 𝑦𝑖 = 𝑦 𝑗 and 0 otherwise.

The pioneering GNN model GraphSAGE [17] are widely used

downstream and can be formulated as (without sampling)

H(𝑙+1) = 𝜙
(
H(𝑙 )W(𝑙 )

1
+ PH(𝑙 )W(𝑙 )

2

)
, (2)

where 𝜙 (·) is the activation function, H(𝑙 )
denotes the input fea-

tures of the 𝑙-th layer, P = D−1A is the propagation matrix and

W(𝑙 )
is the weight matrix. An 𝐿-layer GNN is a function mapping

the 𝑑-dimensional input node features H(0) = X∈ R𝑁×𝑑
to the

normalized logits Z = 𝑓𝜃 (G) = 𝑓𝜃 (X,A) ∈ R𝑁×𝐶
over 𝐶 classes.

3 PROSPECT Framework
The knowledge fusion between GNN and MLP is performed by

incorporating both GNN-to-MLP and MLP-to-GNN disiatlltion, as

illustrated in Figure 1. The optimization objective of PROSPECT
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Figure 1: PROSPECT architecture. MLP and GNN indepen-
dently learn data knowledge with cross-entropy loss while si-
multaneously distilling knowledge to each other. After train-
ing, either Prospect-GNN or Prospect-GNN can be deployed.

comprises GNN Eq. (3b) and MLP Eq. (3c) parts, and can be formu-

lated as

L𝑝𝑟𝑜 =L𝑔 + L𝑚 (3a)

L𝑔 =
1

|V𝐿 |
∑︁
𝑖∈V𝐿

ℓ𝐶𝐸

(
𝑦𝑖 ,

[
Z𝑔

]
𝑖

)
+

𝛼1𝑡
2

1

|V𝑜𝑏𝑠 |
∑︁
𝑖∈V

ℓ𝐾𝐿𝐷

( [
Z(𝑡1 )
𝑚

]
𝑖
,

[
Z(𝑡1 )
𝑔

]
𝑖

)
(3b)

L𝑚 =
1

|V𝐿 |
∑︁
𝑖∈V𝐿

ℓ𝐶𝐸 (𝑦𝑖 , [Z𝑚]𝑖 )

+
𝛼2𝑡

2

2

|V𝑜𝑏𝑠 |
∑︁
𝑖∈V

ℓ𝐾𝐿𝐷

( [
Z(𝑡2 )
𝑔

]
𝑖
,

[
Z(𝑡2 )
𝑚

]
𝑖

)
, (3c)

where ℓ𝐶𝐸 is the cross-entropy loss, ℓ𝐾𝐿𝐷 is the Kullback-Leibler

divergence (KLD),V𝐿 is the training set andV𝑜𝑏𝑠 is the set of nodes
with observable features, 𝛼1 and 𝛼2 are the weights of distillation

losses, the subscripts of Z𝑔 and Z𝑚 denote the prediction matrices

separately belonging to Prospect-GNN and Prospect-MLP, and the

superscripts 𝑡1 and 𝑡2 of Z(𝑡1 )
and Z(𝑡2 )

are softmax temperatures.

3.1 Adversarial robustness
The trained Prospect-GNN and Prospect-MLP usually achieve com-

parable performance (as shown by the experiments in Section 5).

Thus we prefer to deploy the later for fast inference. Since MLP

does not require graph structure, PROSPECT can be completely im-
mune to evasion structure attacks. Note that due to such perfect

evasion robustness, the performance of Prospect-MLP under eva-

sion attacks will be the same as when trained and tested on clean

graphs. Robustness against evasion node feature attacks can be

addressed through efficient adversarial feature training, which has

been extensively explored in non-graph literature. Therefore, we

do not focus on this aspect.

In the context of poisoning attacks, GNNs are compromised by

the tainted structure during training, whereas MLPs only utilize

clean node features. Consequently, MLP-to-GNN distillation can

cleanse the erroneous knowledge in Prospect-GNN by leveraging

the pure knowledge from the cooperative Prospect-MLP. To prevent

the MLP from being poisoned by GNNs, we employ an alternating

learning strategy (detailed in Section 4): primarily training the MLP

first, followed by primarily training the GNN within each period.

3.2 Clean accuracy improvement
Offline GNN-MLP methods, like GLNN [54], improve the MLP’s to

match that of the GNN teacher by transferring structural knowledge

through the GNn-to-MLP distillation direction. Since PROSPECT in-

cludes this distillation direction, Prospect-MLP will at least achieve

the performance level of GLNN. Furthermore, recent studies on

non-graph data [26] indicate that the key for online distillation to

surpass offline distillation lies in the reverse distillation from the

student to the teacher. Reverse distillation can reduce the knowl-

edge gap and thus facilitates knowledge transfer from teacher to

student. As PROSPECT incorporates MLP-to-GNN distillation, it is

likely that Prospect-MLP will outperform the unidirectional GLNN.

For Prospect-GNN, it is known that GNNs primarily focus on

structural information in graphs, sometimes resulting in insufficient

exploitation of node feature information, particularly when deeper

layers lead to indistinguishable embeddings [6, 32, 40]. In contrast,

MLPs consistently excel in extracting node features. Thus, Prospect-

MLP can help Prospect-GNN outperform the standalone GNN by

imparting knowledge of discriminative feature learning.

3.3 Heterophily Adaptability
Previous defenses [14, 22, 25, 50, 55, 56] utilize feature similarity

between node pairs to detect adversarial edges, operating under the

premise that attacks decrease homophily. This cannot differentiate

between clean and adversarial edges on heterophilic graphs, since

the clean graph itself is already highly heterophilic. PROSPECT, on

the other hand, transfers clean node knowledge from the MLP to

the GNN on a node-by-node basis, thus mitigating the effects of

poisoned structures without relying on pairwise comparisons. As a

result, PROSPECT does not require graph homophily assumption.

Beyond adversarial robustness, the improvements in clean accu-

racy are also observed on heterophilic graphs. Many GNNs produce

similar features for neighboring nodes, leading to the tendency

of classifying adjacent nodes into the same category, which aids

in classification on homophilic graphs. However, on heterophilic

graphs, neighboring nodes often belong to different categories. In

such cases, we need less similar representations for adjacent nodes

and MLP can provide such representations to regulate the GNN.

3.4 Inference Scalability
After training, Prospect-MLP can be deployed to latency-sensitive

industrial scenarios [9, 33]. Since MLP does not rely on the graph

structure, the majority of time and space consumption arsed from

neighbor fetching and aggregation is saved.

4 QACA Scheduler
The PROSPECT optimization objective Eq. (3a) consists of four

potentially conflicting components, making the learning more com-

plex than with MLP or GNN alone. To mitigate potential con-

vergence issues caused by knowledge conflicts between hetero-

geneous MLP and GNN, we investigate the convergence conditions
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of Prospect-MLP in Theorem 1 and adopt the cosine annealing

(CA) [30] learning accordingly. Additionally, we use an alternating

strategy, silencing each participant in turn to further stabilize the

training process. Together, these two ingredients constitute our

QACA learning rate scheduler.

4.1 QACA Design
Theorem 1. Given a Prospect-MLP trained with the loss function
Eq. (3c) and assume that ∃𝑢 > 0,

Tr

{
(𝑤1 −𝑤2)⊤ [∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)]

}
≥ 𝑢∥𝑤1 −𝑤2∥2𝐹 , (4)

one global or local optimal MLP weight 𝑤∗ of the last layer can be
found by gradient descent if

0 ≤
(
1 + 𝜂2𝛽2 − 2𝜂𝑢

)
< 1 (5a)

𝛽 =
1

|V𝐿 |
𝜎 (H⊤S⊤S)𝜎 (H) + 𝛼𝑡2

𝑁
𝜎2 (H), (5b)

where 𝜂 is the learning rate, H is the input feature matrix of last MLP
layer, 𝜎 (·) is the matrix spectral norm, and S ∈ {0, 1} |V𝐿 |×𝑁 is the
row selection matrix to extract the training node rows of the matrix
X ∈ R𝑁×𝑑 into SX ∈ R |V𝐿 |×𝑑 .

Theorem 1, proved in Section 4.2, establishes the relationship

between the learning rate 𝜂, the input to the final MLP layer, the

distillation weight 𝛼 , and the distillation temperature 𝑡2 when the

model converges. The convergence condition Eq. (5a) is crucial

in inspiring the design of QACA. Besides, the value range of 𝜇 in

the assumption Eq. (4) vary throughout the training, with changes

diminishing as the model approaches convergence.

4.1.1 Cosine Annealing (CA). Although Theorem 1 specifically

addresses the final MLP layer, the primary proof methodology can

be extended to derive similar quadratic inequalities for all layers.

Nonetheless, this simplified theorem provides sufficient motivation

for our approach. Defining 𝑔(𝜂) = 𝜂2𝛽2 − 2𝜂𝑢, the convergence

inequality (5a) becomes 0 > 𝑔(𝜂) ≥ −1. The roots of 𝑔(𝜂) are 0 and

2𝑢/𝛽2, and the points

(
𝑢−

√
𝑢2−𝛽2
𝛽2

,−1
)
and

(
𝑢+
√
𝑢2−𝛽2
𝛽2

,−1
)
lie on

𝑔(𝜂) if 𝑢 > 𝛽 . Figure 2 depicts two scenarios of 𝑔(𝜂), highlighting a
gap between the feasible regions in the left scenario. For a given

learning rate 𝜂0, the potential outcomes in the left scenario include:

• 𝜂0 > 2𝑢
𝛽2
: it does not meet the convergent condition

• 𝑢−
√
𝑢2−𝛽2
𝛽2

< 𝜂0 <
𝑢+
√
𝑢2−𝛽2
𝛽2

: it does not satisfies the con-

vergent condition

• 𝑢+
√
𝑢2−𝛽2
𝛽2

≤ 𝜂0 ≤ 2𝑢
𝛽2

or 0 < 𝜂0 ≤ 𝑢−
√
𝑢2−𝛽2
𝛽2

: as the train-

ing progresses, 𝜂0 may fall outside these two regions because

𝑢 and 𝛽 typically fluctuate during the training process.

For the right scenario depicted in Figure 2, similar challenges arise,

albeit with different feasible regions. To mitigate these issues, one

simple approach is to select a very small 𝜂0 near the origin, ensuring

that 𝜂0 always remains within the feasible region, even as 𝑢 and 𝛽

fluctuate. However, this can result in unacceptably slow training.

To overcome this problem, we propose employing an annealing

strategy during each scheduling period. By starting with a suit-

ably large initial learning rate 𝜂0 and a cold lower bound 𝜂min

near the origin, we enable rapid training in the initial epochs. The

0
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2u
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u u2 2

2
u + u2 2
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g( ) = 2 2 2u
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Figure 2: Plot of 𝑔(𝜂) = 𝜂2𝛽2 − 2𝜂𝑢. The orange lines are the
symmetry axes.The green segments on the horizontal axis
are the feasible regions of the convergence inequality in (5a).

learning rate then adapts to remain within the feasible regions

for a greater number of epochs compared to a fixed 𝜂0, as it can

traverse or stay within these regions even as they change with

𝑢 and 𝛽 during training. Ultimately, 𝜂 decays to (0, 𝜂min], where
𝜂min ≪

(
𝑢 −

√︁
𝑢2 − 𝛽2

)
/𝛽2, an interval that is relatively insen-

sitive to variations 𝑢 and 𝛽 . Given the well-documented benefits

of fast convergence and improved accuracy facilitated by cosine

annealing with warm restarts [30], our annealing component is

built on this scheduling method.

4.1.2 Quasi-alternating (QA) learning. The model heterogeneity be-

tween GNN and MLP in PROSPECTmay cause knowledge conflicts,

which can be further exacerbated by poisoned structures. When

both learning rates are high, the rapid and intense exchange of

knowledge can confuse the participants in PROSPECT. Conversely,

if only one learning rate is high, the unique knowledge from the

side with the lower learning rate will remain relatively stable and

thus more accessible. Additionally, as indicated by Theorem 1, al-

ternating the learning rates can stabilize the training dynamics of

Prospect-MLP. Specifically, when Prospect-GNN remains inactive

and maintains stable knowledge, 𝑢 in Eq. (4) is less likely to oscil-

late because the gradients from GNN-to-MLP distillation are more

stable with consistent GNN knowledge. Furthermore, drawing an

analogy to the alternating iterative turbo decoding [2], we hypoth-

esize that an alternating knowledge exchange mechanism can help

PROSPECT mitigate errors caused by poisoning attacks.

4.1.3 QACA learning rate scheduler. The above analysis results in
our QACA scheduler, which can be formulated as

𝜂𝑇 =

{
𝜂min +

(𝜂max−𝜂min )
2

(
1 + cos

(
2𝑇cur 𝜋
𝑇0

))
𝑇cur <

𝑇0
2

𝜂min 𝑇cur ≥ 𝑇0
2

, (6)

where 𝜂min and 𝜂max determine the range of learning rates, 𝑇cur =

(𝑇+𝐵) mod 𝑇0 accounts for howmany epochs since the last restart,

𝐵 is the offset before starting scheduling, and 𝑇0 epochs constitute

a minimal schedule period. Within one minimal period, QACA

performs annealing in the first 𝑇0/2 epochs and silences learning

in the later half. In PROSPECT, we set the offsets 𝐵 = 𝑇0/2 for GNN
and 𝐵 = 0 for MLP to train them alternatingly. Besides, a small 𝜂min

retains some model activity, making learning"quasi"-alternating.
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4.2 Proof of Theorem 1
4.2.1 Auxiliaries for Theorem 1 Proof . The tools required to prove

Theorem 1 are listed here, with their proofs provided in the supple-

mentary materials.

Definition 2. (Lipschitz constant) A function 𝑓 : X → Y is 𝐾-
Lipschitz (continuous) w.r.t. a norm ∥ · ∥ if there is a constant 𝐾 such
that

∀𝑥1, 𝑥2 ∈ X, ∥ 𝑓 (𝑥1) − 𝑓 (𝑥2)∥ ≤ 𝐾 ∥𝑥1 − 𝑥2∥. (7)

The smallest 𝐾 admits the inequality is one of the Lipschitz constants
of 𝑓 and denoted as ∥ 𝑓 ∥𝐿𝑖𝑝 .

Theorem 2 (Rademacher [16], Theorem 3.1.6; [47], Theorem 1). If
𝑓 : R𝑛 → R𝑚 is a locally Lipschitz continuous function2 , then 𝑓 is
differentiable almost everywhere. Moreover, if 𝑓 is Lipschitz continu-
ous, then

∥ 𝑓 ∥𝐿𝑖𝑝 = sup

𝑥∈R𝑛
∥∇𝑓 (𝑥)∥2, (8)

where ∥M∥2 = sup∥𝑥 ∥≤1 ∥M𝑥 ∥2 is the operator norm of matrix
M ∈ R𝑚×𝑛 .

Theorem 3 (Banach fixed-point theorem). Let (X,D) be a non-
empty complete metric space with a contraction mapping 𝑓 : X → X
such that

D (𝑓 (𝑥1), 𝑓 (𝑥2)) ≤ 𝑞D (𝑥1, 𝑥2) , ∃𝑞 ∈ [0, 1), (9)

then there is a unique fixed-point 𝑓 (𝑥∗) = 𝑥∗ that can be found by
generating a sequence {𝑥𝑛 | 𝑥𝑛+1 = 𝑓 (𝑥𝑛)}𝑛∈N with an initial point
𝑥 (0) ∈ X. D is usually a vector or matrix norm.

Proposition 1. Given two functions 𝑓 : X → U and 𝑔 : U → Y
whose Lipschitz constants are respectively ∥𝑔∥𝐿𝑖𝑝 and ∥ 𝑓 ∥𝐿𝑖𝑝 , the
Lipschitz constant of the composite function 𝑔 ◦ 𝑓 : X → Y satisfies
the inequality

∥𝑔 ◦ 𝑓 ∥𝐿𝑖𝑝 ≤ ∥𝑔∥𝐿𝑖𝑝 ∥ 𝑓 ∥𝐿𝑖𝑝 . (10)

Proposition 2. The Lipschitz constant w.r.t. the Frobenius norm of
the linear operator Y𝑚×𝑛 = A𝑚×𝑘X𝑘×𝑛 is the spectral norm ofA, and
that of the row-wise t-softmax function Y𝑚×𝑛 = softmax𝑡 (X𝑚×𝑛) is
1/𝑡 .

4.2.2 Main Proof of Theorem 1 .

Proof. For the symbol simplicity, we replace W with 𝑤 here.

The local or global optimal MLP weight𝑤∗
should satisfy station-

ary point condition ∇𝑤𝐿𝑚 (𝑤∗) = 0, meaning that 𝑤∗ = 𝑤∗ −
𝜂∇𝑤L𝑚 (𝑤∗). We can thus construct a function 𝐺 (𝑤) = 𝑤 −
𝜂∇𝑊 L𝑚 (𝑤) where 𝜂 is the step size of gradient decent and 𝑤∗

is the fixed-point of 𝐺 (𝑤). Let the metric D be Frobenius matrix

norm. If follows that for any two weights𝑤1,𝑤2 ∈ W
∥𝐺 (𝑤1) −𝐺 (𝑤2)∥2𝐹 (11a)

=∥𝑤1 −𝑤2 − 𝜂 (∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)) ∥2𝐹 (11b)

=∥𝑤1 −𝑤2∥2𝐹 + 𝜂2∥∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)∥2𝐹
− 2 Tr

{
𝜂 (𝑤1 −𝑤2)⊤ [∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)]

}
. (11c)

To apply Banach fixed-point theorem, we need construct the in-

equality between ∥𝐺 (𝑤1)−𝐺 (𝑤2)∥2𝐹 and ∥𝑤1−𝑤2∥2𝐹 , so the second
2
The functions whose restriction to some neighborhood around any point is Lipschitz

are locally Lipschitz.

and third terms in (11c) should be tackled. Since the assumption in

Theorem 1 copes with the third term, we move on to the second

term now.

The gradient of Prospect-MLP loss function L𝑚 (Eq. (3c)) w.r.t.

the weights of all layers can be obtained by backpropagation. For

simplicity, we denote by 𝑓𝑡 (·) the last 𝑡-softmax layer and only

consider the weight of the last MLP layer. In spite of this, our proof

can be extended to an arbitrary MLP layer since the main tool, i.e.,

Proposition 1, is extendable
3
. However, such extension would lead

to cumbersome formulas without providing additional insights. To

proceed, we expand the second term to

∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)

=
H⊤

𝑁𝑡𝑟
S⊤S (𝑓 (H𝑤1) − Y) + 𝛼𝑡2

𝑁
H⊤

(
𝑓𝑡2 (H𝑤1) − Z𝑡2𝑔

)
− H⊤

𝑁𝑡𝑟
S⊤S (𝑓 (H𝑤2) − Y) − 𝛼𝑡2

𝑁
H⊤

(
𝑓𝑡2 (H𝑤2) − Z𝑡2𝑔

)
(12a)

=
H⊤

𝑁𝑡𝑟
S⊤S [𝑓 (H𝑤1) − 𝑓 (H𝑤2)] +

𝛼𝑡2

𝑁
H⊤ [

𝑓𝑡2 (H𝑤1) − 𝑓𝑡2 (H𝑤2)
]
,

(12b)

whereH is the input featurematrix of lastMLP layer and𝑁𝑡𝑟 = |V𝐿 |
is the size of training set.

We construct two functions

𝑔1 (𝑤) = H⊤

𝑁𝑡𝑟
S⊤S𝑓 (H𝑤) (13)

𝑔2 (𝑤) = 𝛼𝑡2

𝑁
H⊤ 𝑓𝑡2 (H𝑤), (14)

and then Eq. (12b) turns out to be

∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2) = 𝑔1 (𝑤1) − 𝑔1 (𝑤2) + 𝑔2 (𝑤1) − 𝑔2 (𝑤2) .
(15)

It follows that

∥∇L𝑚 (𝑤1) − ∇L𝑚 (𝑤2)∥2𝐹 (16a)

=∥𝑔1 (𝑤1) − 𝑔1 (𝑤2) + 𝑔2 (𝑤1) − 𝑔2 (𝑤2)∥2𝐹 (16b)

=∥𝑔1 (𝑤1) − 𝑔1 (𝑤2)∥2𝐹 + ∥𝑔2 (𝑤1) − 𝑔2 (𝑤2)∥2𝐹
+ 2∥𝑔1 (𝑤1) − 𝑔1 (𝑤2)∥𝐹 ∥𝑔2 (𝑤1) − 𝑔2 (𝑤2)∥𝐹 (16c)

≤∥𝑔1 (𝑤)∥2𝐿𝑖𝑝 ∥𝑤1 −𝑤2∥2𝐹 + ∥𝑔2 (𝑤)∥2𝐿𝑖𝑝 ∥𝑤1 −𝑤2∥2𝐹
+ 2∥𝑔1 (𝑤)∥𝐿𝑖𝑝 ∥𝑔2 (𝑤)∥𝐿𝑖𝑝 ∥𝑤1 −𝑤2∥2𝐹 (16d)

According to Propositions 2 and 1, we have

∥𝑔1 (𝑤)∥𝐿𝑖𝑝 =
1

𝑁𝑡𝑟
𝜎 (H⊤S⊤S)𝜎 (H) (17)

∥𝑔2 (𝑤)∥𝐿𝑖𝑝 =
𝛼𝑡2

𝑁
𝜎2 (H) . (18)

Then the upper bound (19) becomes

𝑈1 =

[
1

𝑁𝑡𝑟
𝜎 (H⊤S⊤S)𝜎 (H) + 𝛼𝑡2

𝑁
𝜎2 (H)

]
2

∥𝑤1 −𝑤2∥2𝐹 . (19)

3
The extended proof also employs that the common activation functions (e.g., ReLU,

LeakyReLU, Sigmoid, Tanh, and Sigmoid) are both 1-Lipschitz.
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Substituting Eq. (19) and the assumption Eq. (4) into Eq. (11c) leads

to

∥𝐺 (𝑤1) −𝐺 (𝑤2)∥2𝐹 (20a)

≤∥𝑤1 −𝑤2∥2𝐹 + 𝜂2
[

1

𝑁𝑡𝑟
𝜎 (H⊤S⊤S)𝜎 (H) + 𝛼𝑡2

𝑁
𝜎2 (H)

]
2

∥𝑤1 −𝑤2∥2𝐹
(20b)

=

{
1 + 𝜂2

[
1

𝑁𝑡𝑟
𝜎 (H⊤S⊤S)𝜎 (H) + 𝛼𝑡2

𝑁
𝜎2 (H)

]
2

− 2𝜂𝑢

}
∥𝑤1 −𝑤2∥2𝐹

(20c)

=

(
1 + 𝜂2𝛽2 − 2𝜂𝑢

)
∥𝑤1 −𝑤2∥2𝐹 . (20d)

□

5 Experiments
In this section, extensive experiments on a variety of datasets are

conducted to answer the following research questions (RQs). RQ1:
How robust is the proposed PROSPECT? RQ2: Does PROSPECT
compromise clean accuracy? RQ3: Does PROSPECT possess high

heterophily adaptability? RQ4: Can QACA facilitate the training

process of PROSPECT? RQ5: How scalable is the inference of

PROSPECT?

5.1 Experimental Settings

Table 2: The data statistics of the used graphs.

Dataset #Nodes #Edges #Features #Classes HR

Texas 183 279 1703 5 0.061

Polblogs 1222 16714 1490 2 0.906

Citeseer 2110 3668 3703 6 0.736

Chameleon 2277 31371 2325 5 0.230

Cora 2485 5069 1433 7 0.804

CoraML 2810 7981 2879 7 0.784

ACM 3025 13128 1870 3 0.821

UAI 3067 28311 4973 19 0.364

5.1.1 Datasets. We consider public graph datasets: Cora, Cite-

seer, UAI [42], ACM [48], Polblogs [1], Chameleon, Texas [36] and

CoraML [3].The statistics of the largest connected components of

these graphs are summarized in Table 2. Following [61], the largest

connected component (LCC) of each graph is taken and split with

10% nodes for training, 10% validation, and 80% testing. We repeat

such 1:1:8 data splitting with 5 random seeds on each graph, and

the results averaged over these 5 distinct splits are reported as the

eventual performance on that graph. Attacked graphs are produced

to evaluate the model robustness and the attackers usually have

only limited attack budgets to modify the graph data. An attack

budget of 5% (15%) means the attacker can flip 0.05|E | (0.15|E |)
entries of adjacency matrix.

5.1.2 Baselines. The baselines are diverse. Method only using node

features: MLP. Early simple GNNs: GCN [23], SAGE [17], and SGC

[49]. Purification-based adversarial defenses: SVD [14], Jaccard

[50], RGCN [56], Guard [55], ProGNN [22], STABLE [25], and GAR-

NET [12]. Heterophilic GNNs: GPRGNN [8] and EvenNet [24]. Of-

fline GNN-MLP distillation: GLNN [54]. The hidden dimension size

of MLPw4 is 4 times that of MLP. The hidden dimension size of

GLNNw4 is 4 times that of GLNN.

5.1.3 More Details. Please refer to the supplementary materials for

details on the software and hardware environment, the code, and

the hyperparameter search range. Additionally, the supplementary

materials include the full robustness results for all 8 datasets under

4 different attack budgets and the inference scalability results on

two additional datasets not covered in the main text. The code is

available at https://github.com/bwdeng20/PROSPECT

5.2 Adversarial Robustness (RQ1 & RQ3)
MetaAttack (with a GCN surrogate) [61], is an effective structure

attack algorithm and serves as a key benchmark for evaluating

robustness. We use MetaAttack to generate contaminated graphs

under different attack budgets and five random splits. For instance,

a Citeseer dataset attacked with a 15% budget is denoted as Citeseer-

Meta-15. Subsequently, we use these contaminated datasets to per-

form transfer poisoning attacks on GNNs and defenses. For each

attack budget, we report the mean and standard deviation of results

across five random splits. Results for attack budgets of 5% and 15%

are presented in Table 3, while those for 10% and 20% can be found

in the supplementary materials.

On heterophilic UAI and Texas, consistent with the seed experi-

ments in Section 1, the accuracy of MLP significantly surpasses that

of GNNs, particularly GCN, especially under attack. Additionally,

as discussed in Section 1, purification defenses designed based on

graph homophily priors (ranging from RGCN to STABLE in Table 3)

perform poorly on heterophilic graphs, sometimes even worse than

unprotected SGC and SAGE. Among heterophilic GNNs, EvenNet

performs better than GPR, indicating that the balance theory [5] in-

ductive bias is more robust to MetaAttack than GPR’s higher-order

neighborhood aggregation.

Surprisingly, even when the teacher SAGE is poisoned, GLNN

cultivates a more robust student via naive offline distillation [19].

Some errors seems to be filtered out in distillation. This has several

implications: 1) Existing graph attacks appear ineffective against

distillation methods; 2) Appropriately designed offline knowledge

distillation could be a simple trick to enhance GNN robustness.

Across all combinations of four datasets and two attack budgets

shown in Table 3, Prospect-SAGE and Prospect-MLP take the top

and second positions. Whether on homophilic graphs (Polblogs and

Citeseer) or heterophilic graphs (UAI and Texas), the robustness

of Prospect-SAGE and Prospect-MLP significantly surpasses that

of standalone SAGE and MLP, demonstrating that the robustness

mechanisms of PROSPECT are suited to heterophilic graphs.

Regarding evasion robustness, the performance of Prospect-MLP

will be equivalent to clean performance (Table 4). Considering that

Prospect-MLP already, on clean data, matches or surpasses other

models affected by evasion structure attacks, its advantage will

significantly increase when actual evasion attacks occur due to

its perfect evasion robustness. That is, Prospect-MLP is almost

definitely more robust than others regarding evasion structure

attacks. Therefore, we skip the real evasion robustness evaluation.
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Table 3: The robustness results (%) on four datasets attacked by MetaAttack. The top two performing models are highlighted in
bold, with the best further underlined.

Polblogs (HR=0.906) Citeseer (HR=0.736) UAI (HR=0.364) Texas (HR=0.061)

5% 15% 5% 15% 5% 15% 5% 15%

MLP 52.21±0.61 66.01±1.37 61.74±2.11 65.71±4.42

MLPw4 51.72±0.87 66.43±1.73 62.71±1.91 68.98±3.32

GCN 77.18±1.76 67.53±0.99 72.03±1.23 64.74±2.70 56.72±4.68 54.22±3.17 49.25±5.43 49.39±2.29

SGC 77.71±1.79 66.95±1.36 71.94±1.31 64.51±2.44 58.78±3.34 56.52±2.64 53.88±2.23 55.24±2.12

SAGE 90.39±0.66 77.34±3.74 72.68±1.25 70.40±1.05 60.02±3.21 60.18±2.65 62.99±3.39 64.35±2.99

RGCN 75.42±1.29 66.18±0.64 71.71±2.04 64.02±1.90 49.89±2.85 48.40±2.74 52.93±1.89 49.52±8.10

SVD 92.43±0.70 73.44±1.77 69.82±0.86 65.15±2.01 48.65±1.14 44.87±1.18 49.66±4.02 48.57±5.66

Jaccard 50.88±1.69 50.88±1.69 72.18±1.81 66.96±2.71 54.08±4.18 50.64±2.69 49.25±5.43 49.39±2.29

Guard 51.58±0.57 51.58±0.57 69.79±1.24 67.35±0.62 20.28±10.99 20.36±8.27 48.03±12.96 47.76±11.40

ProGNN 85.97±5.16 72.78±3.43 71.60±1.84 65.12±2.38 49.22±5.22 38.43±11.55 47.89±10.06 45.31±14.47

STABLE 92.80±2.38 88.55±0.38 74.33±1.08 73.32±1.14 51.78±2.08 47.63±2.26 52.27±2.82 50.52±3.24

EvenNet 87.04±1.45 68.06±1.50 74.08±1.02 70.95±1.71 67.8±2.029 66.91±2.18 62.45±2.70 63.27±2.85

GPR 69.45±1.08 56.13±2.01 73.40±1.04 69.82±1.89 35.38±9.24 34.75±11.11 54.15±2.75 51.02±7.37

GPR-GARNET 72.91±0.84 59.57±1.74 74.05±0.80 74.49±1.50 32.39±5.32 28.17±2.75 54.97±6.39 57.55±3.95

GLNN 91.62±1.35 77.46±3.73 74.25±1.20 71.92±1.38 62.46±2.91 62.02±2.00 66.40±2.57 66.53±5.45

GLNNw4 91.19±1.41 77.12±3.58 74.01±1.32 71.94±1.38 62.62±2.39 62.75±1.99 67.21±2.70 66.40±4.92

Prospect-SAGE 93.95±1.34 92.27±2.26 75.01±0.75 74.81±0.41 69.86±0.58 69.52±0.46 68.84±5.65 71.02±2.30
Prospect-MLP 93.99±0.76 93.95±0.34 75.31±1.18 74.79±0.64 68.31±0.59 69.10±0.45 72.11±2.06 73.20±1.53

Table 4: Accuracy (%) comparison on clean graphs. The mean and std over five splits are reported. The top three performing
models are highlighted in bold, with the best further underlined.

homophilic (HR>0.5) heterophilic (HR<0.5)

Cora Citeseer Polblogs ACM CoraML Texas Chameleon UAI

MLP 65.69±1.43 66.02±1.37 52.21±0.61 87.44±0.28 71.31±0.65 65.71±4.42 42.65±0.86 61.74±2.11

MLPw4 67.02±1.12 66.43±1.73 51.72±0.87 87.39±0.69 71.60±0.94 68.98±3.32 41.08±2.05 62.71±1.91

GCN 84.20±0.92 73.40±2.01 94.79±1.20 89.65±0.75 85.94±0.68 51.29±6.46 56.69±2.68 63.51±1.29

SGC 82.58±0.75 73.57±1.49 94.68±0.90 90.03±0.79 84.66±0.64 53.06±1.86 50.91±2.30 62.28±2.32

SAGE 83.56±0.86 74.53±1.01 94.40±0.77 90.31±0.90 84.51±1.09 64.76±1.76 51.66±2.21 60.56±3.83

RGCN 83.85±0.63 72.94±1.68 94.87±0.81 89.40±2.08 86.19±0.57 51.57±2.17 55.74±1.46 54.80±1.68

SVD 77.72±0.37 69.65±1.53 93.58±0.85 86.41±1.49 81.09±0.61 51.02±2.85 47.87±2.25 50.58±1.82

Jaccard 82.95±0.68 73.50±1.72 50.88±1.69 89.65±0.75 84.81±0.47 51.29±6.46 45.32±1.27 61.09±1.05

Guard 78.33±1.15 70.14±2.30 51.58±0.57 89.23±1.14 77.06±1.07 48.44±8.61 40.89±2.27 32.84±2.31

ProGNN 83.84±0.77 73.72±0.99 94.83±0.51 90.17±0.76 85.64±0.73 51.84±3.31 53.63±1.39 57.65±1.01

STABLE 83.09±0.58 74.44±0.56 94.68±0.45 85.40±0.83 83.62±0.46 50.27±4.70 46.66±1.57 56.47±0.48

EvenNet 84.89±0.35 74.46±0.80 95.24±0.55 90.54±0.57 86.48±0.31 67.21±1.22 51.73±1.22 70.07±1.16
GPR 84.43±0.83 74.88±1.23 94.68±0.43 92.13±0.70 86.38±0.66 56.33±8.76 51.30±0.87 34.99±1.93

GPR-GARNET 83.61±0.59 74.87±0.58 93.03±0.77 92.35±0.48 85.98±0.90 56.87±2.91 50.31±0.91 33.53±7.85

GLNN 83.17±0.68 75.14±0.84 94.15±0.63 91.90±0.45 84.87±0.86 67.48±3.38 48.36±2.19 62.54±3.34

GLNNw4 83.23±0.79 75.60±0.52 94.58±0.82 91.89±0.51 84.99±1.00 68.44±4.60 49.36±2.07 62.94±2.79

Prospect-SAGE 84.94±0.51 75.20±0.70 95.22±0.24 93.15±0.86 85.93±0.91 72.79±3.22 55.88±1.12 69.90±0.92
Prospect-MLP 84.50±0.58 75.81±0.68 95.32±0.41 93.22±0.71 86.54±0.75 73.06±1.64 53.43±1.45 68.97±0.66

5.3 Clean Accuracy (RQ2 & RQ3)
In adversarial attack research on non-graph data, there is typically

a tradeoff between a defense model’s adversarial robustness and

clean accuracy [35]. Although adversarial training is not used, GNN

defenses also show a slight tendency towards this tradeoff. In the

clean performance Table 4, purification methods (from RGCN to

STABLE) generally have slightly lower clean accuracy compared to

their protected GCN counterparts. This is primarily because edges

that benefit classification are likely to be mistakenly removed as

adversarial edges during the purification process.

Our proposed PROSPECT achieves robustness through knowl-

edge fusion, a mechanism that does not compromise the informa-

tion of clean graphs. So PROSPECT does not sacrifice any clean
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Figure 3: Ablation study of QACA learning rate scheduling.
Fixed indicates no learning rate change, QA enables quasi-
alternating learning, CA utilizes the cosine annealing with
warm restart [30], and QACA combines QA and CA.

performance. On the contrary, due to the applicability of the knowl-

edge fusion mechanism to clean graphs, both Prospect-SAGE and

Prospect-MLP show significant performance improvements over

their respective SAGE and MLP baselines, with increases of up

to about 9 percentage points (on UAI and Texas). Additionally, as

shown in Table 4, PROSPECT is effective on both homophilic and

heterophilic graphs, confirming its adaptability to heterophily.

5.4 QACA Effectiveness (RQ4)
In Section 1, we discussed the potential optimization difficulties of

GNN-MLP mutual distillation. To demonstrate this, we conducted

experiments with the following setups: 1) training PROSPECT with

a fixed learning rate. Given that QACA scheduler comprises two

components—cosine annealing (CA) and quasi-alternating (QA),

we designed two ablation optimization baselines: 2) using only

the cosine annealing learning rate strategy without alternating

updates for GNN and MLP; 3) employing a fixed learning rate but

periodically alternating updates for GNN and MLP. We compare

the performance of these three optimization methods with QACA

across multiple attacked datasets. Figure 3 shows that, on most

datasets, using either QA or CA alone results in better performance

than a fixed learning rate. And, combining QA and CA (i.e., QACA)

consistently outperforms all other optimization strategies across

all datasets.

5.5 High Inference Scalability (RQ5)
The real-world production is with a semi-inductive scenario [54]

typically lying between transductive and inductive settings. In this

scenario, some test nodes are visible during training (transductive

test nodes), while others are only visible during testing (inductive

test nodes). Under this setup, we employ MetaAttack to target the

whole graph, resulting in a mixed attack combining elements of

both poisoning and evasion, as the test graph is also perturbed.

We then randomly split the test set V𝑡𝑒𝑠𝑡 = V𝑡𝑟𝑎𝑛𝑠
𝑡𝑒𝑠𝑡 ∪ V𝑖𝑛𝑑

𝑡𝑒𝑠𝑡 , and

measure the average inference speed on 10 inductive test nodes,

along with accuracy on V𝑡𝑒𝑠𝑡 .
Figure 4 demonstrates that despite not utilizing graph structure

during inference, Prospect-MLP achieves semi-inductive robust-

ness comparable to Prospect-SAGE, significantly outperforming

other models. More importantly, Prospect-MLP’s inference speed

(a) Cora-Meta-20 (b) Citeseer-Meta-20

(c) Texas-Meta-20 (d) Polblogs-Meta-20

Figure 4: Acc. (%) vs. inference speed (ms) in the semi-
inductive setting like [54]. That is 20% test nodes are excluded
as inductive ones during training and validation while 80%
test nodes are transductive ones observable across all stages.
The x-axis is logarithmically scaled.

is markedly faster than all methods except MLP. For instance, on

Cora-Meta-20, Prospect-MLP achieves robustness far superior to

GCN-SVD while delivering 500 times faster inference speed.

6 Conclusions
To address key limitations of existing GNN defenses: 1) inadequate
adaptability to heterophily; 2) absent generalizability to early GNNs
such as SAGE; 3) low inference scalability, this study provides sim-

ple yet efficient PROSPECT. PROSPECT pioneers online and mutual

GNN-MLP distillation that merges the complementary knowledge

between GNN and MLP. It can inference as efficiently as MLPs and

seamlessly fit into early GNNs like SAGE. We analyzes the potential

GNN-MLP knowledge conflicts from the convergence perspective

in Theorem 1, which inspires our QACA scheduler. Experiments on

five homophilic and three heterophilic graph datasets demonstrate

the effectiveness of QACA scheduler, the high inference scalability

of PROSPECT, and the superior adversarial robustness and clean ac-

curacy of PROSPECT over previous defenses and offline GNN-MLP

distillation methods.

Compared to the methods proposed, the more significant contri-

butions of this study lie in the insights and inspirations it offers. We

uncover the complementary nature of MLP and GNN knowledge

and demonstrate that this knowledge can be fused through mutual

distillation guided by the QACA scheduler. Our findings prompt a

reevaluation of the potential of MLPs in graph learning and extend

the application of GNN-MLP distillation beyond mere inference

acceleration.
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