
2021 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, OCT. 25–28, 2021, GOLD COAST, AUSTRALIA

DYNAMIC GRAPH CONVOLUTIONAL NETWORK: A TOPOLOGY OPTIMIZATION
PERSPECTIVE

Bowen Deng, Aimin Jiang

College of Internet of Things Engineering, Hohai University, ChangZhou, China

ABSTRACT

Recently, graph convolutional networks(GCNs) have drawn
increasing attention in many domains, e.g., social networks,
recommendation systems. It’s known that, in the task of graph
node classification, inter-class edges connecting nodes from
different categories often degrade the GCN model perfor-
mance. On the other hand, a stronger intra-class connection
in terms of the edge number and edge weights is always
beneficial to node classification. Most existing GCN models
assume that the topology and edge weights of the under-
lying graph are both fixed. However, real-world networks
are often noisy and incomplete. To take into account such
uncertainty in graph topology, we propose in this paper a
dynamic graph convolution network (DyGCN), where edge
weights are treated as learnable parameters. A novel adaptive
edge dropping (AdaDrop) strategy is developed for DyGCN,
such that even graph topology can be optimized. DyGCN is
also a flexible architecture that can be readily combined with
other deep GCN models to cope with the oversmoothness
encountered when the network goes very deep. Experimental
results demonstrate that the proposed DyGCN and its deep
variants can achieve competitive classification accuracy in
many datasets.

Index Terms— Graph deep learning, supervised learning,
graph node classification, graph topology optimization

1. INTRODUCTION

GCN [1] and many other graph neural networks [2, 3, 4] suf-
fer from the notorious oversmoothing issue [5] arisen when
the model depth goes deep, which drives the node features so
indistinguishable that classifiers fail to work. Many efforts
have been made to overcome it. JKNet proposed in [6] com-
bines the representations learnt from all layers by max or con-
catenate operation for each node. Inspired by ResNet [7] and

This work was supported in part by the National Key Research and
Development Program 2018AAA0100800, the National Nature Science
Foundation of China under grant 61801055, the Fundamental Research
Funds for the Central Universities of China under grants 2018B23014 and
2018B47114, and the Key Development Program of Jiangsu Province of
China under grants BE2017071, BE2017647, and BE2018004-04.

APPNP [8], the GCNII layer is proposed in [9], which em-
ploys initial residual connection and identity mapping to pre-
vent feature collapse. This kind of works aim to design deep
architectures and pay no attention to the underlying graph
topology, though it’s closely related to the oversmoothness
issue.

The information-to-noise ratio (INR) [10] is defined to re-
flect the oversmoothness, that is, the proportion of intra-class
node pairs out of all contactable node pairs that have interac-
tions through the entire GCN model. It has been empirically
shown that topology optimization can effectively increase the
INR and alleviate the oversmoothing issue. But, only hard
operations (e.g., removing inter-class edges and adding intra-
class edges) are considered in [10]. On the other hand, GCN-
LPA [11] seeks to utilize label propagation module to mod-
ify the underlying graph with soft operations (e.g., increasing
the weights of intra-class edges and decreasing those of inter-
class ones). In GCN-LPA, the updates of edge weights and
GCN parameters are executed in turn and label propagation
module serves as a regularizer of graph topology.

In this paper, we propose a dynamic GCN layer – DyGCN.
In the presented architecture, edge weights are regarded as
trainable parameters and used to adjust the adjacency ma-
trix(and hence the propagation matrix) of graph. Based on
this, we further propose a hard topology optimization strat-
egy, that adaptively drops possible inter-class edges according
to learnt edge scores. In contrast to GCN-LPA, no extra mod-
ules are required, such that DyGCN is much easier to be
integrated with existing GCN models. Our contributions pre-
sented in this paper are summarized as follows: i. A novel
DyGCN architecture is proposed for the task of node classi-
fication. Edge weights and linear transform parameters are
trained simultaneously, such that the graph topology is no
longer fixed; ii. A theoretical analysis of DyGCN is made in
terms of both expressive ability and potentials to perform a
soft topology optimization. Furthermore, the core mechanism
of DyGCN is transferred into JKNet and GCNII, giving birth
to JKNet(Dy) and GCNII(Dy), respectively; iii. A novel hard
topology optimization strategy is also developed to adaptively
remove noisy edges(i.e., inter-class edges connecting nodes
from different categories).

978-1-7281-6338-3/21/$31.00 ©2021 IEEE

2. DYNAMIC GCN

2.1. DyGCN Layer

Given an undirected and connected graph G = {V, E} con-
sisting of N nodes and M edges, we denote its adjacency and
degree matrices by A and D. Its augmented adjacency and
degree matrices are given, respectively, by Ã = A + I and
D̃ = D+ I. The famous vanilla GCN [1] is then formulated
as:

H(ℓ+1) = σ
(
P̃H(ℓ)W(ℓ)

)
, (1)

where P̃ = D̃−1/2ÃD̃−1/2 is a fixed propagation matrix re-
computed before training and inference, H(ℓ) denotes the in-
put features to the ℓ-th GCN layer, W(ℓ) is the weight matrix
of the ℓ-th layer, and σ (·) represents an activation function.

Naive DyGCN is more a framework than a novel layer
since only the propagation matrix is different from traditional
GCNs, as shown by the l-th layer formula below.

H(ℓ+1) = σ
(
P(ℓ)H(ℓ)W(ℓ)

)
, (2)

P(ℓ) = SparseSoftMax
(

LeakyReLU
(
Ã(ℓ)

))
. (3)

It can be readily verified that P(ℓ) is a right stochastic matrix,
whose rows are obtained by the sparse softmax function ap-
plied on the corresponding rows of the augmented adjacency
matrix Ã(ℓ). It’s sparse since only nonzero elements of Ã(ℓ)

are involved in this operation. Another noticeable feature of
(2) is that Ã(ℓ) is learnable and its entries is no longer re-
quired to be nonnegative values as softmax will normalize the
propagation weights.

2.2. Deep Variants

Though many experiments(see Section3.3) demonstrate the
better robustness to oversmoothness than other shallow GCN
models, e.g., GCN and GCN-LPA [11], DyGCN still incurs
this issue when models go very deep. As the GCN w/o ReLU
activation is proven both empirically [12] and theoretically
[5] more resistant to oversmoothness than GCN w/ ReLU, and
DyGCN has the same aggregation scheme(2) with GCN(1),
we investigate the expressive ability of linear DyGCN, i.e.,
DyGCN w/o ReLU, to show the limitation of naive deep
DyGCN. Formally, a L layer linear DyGCN

H(L+1) = P(L) · · ·P(0)H(0)W(0) · · ·W(L). (4)

is constrained by the following theorem.

Theorem 1. (Linear DyGCN’s expressive ability theorem) If
a L-layer DyGCN model is linear and the Markov chain cor-
responding to P(ℓ) is ergodic, the final output H(L) converges
to a rank-1 matrix as L → ∞.

Proof. Since P(ℓ) is a right stochastic matrix, that has eigen-
value 1 with the corresponding eigen vector 1. If the Markov
chain corresponding to P(ℓ) is ergodic, we have a unique
eigen vector with eigenvalue 1 and the modulus of the rest
of eigenvalues is less than 1. To proceed, we further define

Q(ℓ) = P(ℓ) − 1

N
1 · 1⊤ = P(ℓ)

(
I− 1

N
1 · 1⊤

)
. (5)

From (5), we readily obtain that Q(ℓ) has a zero eigenvalue,
which corresponds to eigen vector 1. Furthermore, Q(ℓ) share
the rest of eigenvalues of P(ℓ) except 1. According to the
Gershgorin circle theorem, the spectra radius ρ

(
Q(ℓ)

)
of Q(ℓ)

is thus less than 1. This further implies

lim
L→∞

ρ

(
L∏

ℓ=0

Q(ℓ)

)
≤ lim

L→∞

L∏
ℓ=0

ρ
(
Q(ℓ)

)
= 0. (6)

Since ρ (·) measures the largest absolute value of eigenvalues
of a square matrix, (6) also indicates that all the eigenvalues
of
∏L

ℓ=0 Q
(ℓ) approach zeros as L → ∞ and, accordingly,∏L

ℓ=0 Q
(ℓ) finally becomes a zero matrix.

On the other hand, expanding
∏L

ℓ=0 Q
(ℓ) yields

L∏
ℓ=0

Q(ℓ) =

L∏
ℓ=0

(
P(ℓ) − 1

N
1 · 1⊤

)

=

L∏
ℓ=0

P(ℓ) − 1

N
1 · 1⊤

L−1∏
ℓ=0

P(ℓ),

(7)

where we recursively apply P(ℓ) · 1 = 1. Let G(L) be∏L
ℓ=0 P

(ℓ). Then, we obtain from the above equation

lim
L→∞

L∏
ℓ=0

Q(ℓ) =

(
I− 1

N
1 · 1⊤

)
·G(∞)

= 0.

(8)

Obviously, G(∞) is a rank-1 matrix.

Theorem 1 motivates us to combine DyGCN with deep
architectures for deep variants. Specifically, the fixed propa-
gation matrix in JKNet and GCNII is replaced by (3). In the
subsequent discussion, we refer to the resulting deep models
as JKNet(Dy) and GCNII(Dy), separately.

2.3. DyGCN & Soft Topology Optimization

The proposed DyGCN is also trained by the back-propagation
(BP) method. It can be demonstrated that, based on our archi-
tecture, the BP method can effectively enhance the intra-class
connections and weaken the inter-class ones. We focus on the
gradient of propagation matrix P(ℓ) instead of augmented ad-
jacency matrix because it’s more straightly related to feature

aggregation. To simplify the analysis, only the last propaga-
tion matrix employed to classify nodes is under consideration.
With adopting the cross-entropy loss Lgcn, it is readily to ob-
tain

∂Lgcn

∂P(L)
=

∂Lgcn

∂H(L+1)

(
H(L)W(L)

)⊤
= (Y −T)

(
X(L)

)⊤
, (9)

where X(L) = H(L)W(L) can be regarded as classification
scores not propagated by P(L) and its j-th row is denoted by
x
(L)
j , and Y ∈ [0, 1]N×C is the predication matrix showing

the possibilities of C classes for each node. Because we focus
on the last layer, in the subsequent discussion, the superscript
(L) will be omitted for the ease of notations. For the (i, j)-th
element of ∂Lgcn

∂P(L) , (9) is reduced to[
∂Lgcn

∂P(L)

]
ij

= (yi − ti) · x⊤
j . (10)

Let ci be the gold label corresponding to node i for i =
1, . . . , N . Suppose that a neighbor j is correctly classified
with high confidence, i.e., xj,cj ≫ xj,k for k ̸= cj , where
xj,k denotes the k-th element of xj . In this context, we con-
sider two scenarios.

1. If node i is of the same class, that is, ci = cj , from (10)
we then have[

∂Lgcn

∂P(L)

]
ij

= xj,ci(yi,ci − 1) +
∑
k ̸=ci

xj,kyi,k

=
∑
k ̸=ci

yi,k(xj,k − xj,ci) < 0,
(11)

which tells that the intra-class propagation weight of
edge from node j to i will be augmented in the next up-
date, no matter whether node i is recognized correctly
or not.

2. If nodes i and j are from different classes (i.e., ci ̸=
cj) and node i is misclassified as cj with a very high
probability, meaning yi,cj ≫ yi,k for k ̸= cj , (10) is
turned to[

∂Lgcn

∂P(L)

]
ij

= xj,cjyi,cj + xj,ci(yi,ci − 1)

+
∑

k ̸=ci,cj

xj,kyi,k

=
(
xj,cj − xj,ci

)
yi,cj

+
∑

k ̸=ci,cj

yi,k (xj,k − xj,ci)

≈ xj,cj − xj,ci > 0.

(12)

Under this scenario, the propagation weight
[
P(L)

]
ij

will be whittled.

Although a clear conclusion cannot be reached except in the
above situations, many experiments (see Section3.2) demon-
strate that (Hypothesis 1)intra-(inter-) connection can be en-
hanced(weakened) to some extent by soft topology optimiza-
tion via propagation matrix P(ℓ) in DyGCN, JKNet(Dy), and
GCNII(Dy).

2.4. AdaDrop

Soft topology optimization does not abandon any element of
P(ℓ). In practice, if some edges are identified as inter-class
edges, they can be removed earlier. To this end, we fur-
ther develop the adaptive dropping (AdaDrop) for DyGCN.
Denoting the set of predecessors(or neighbors for undirected
graph) of node i by N1(i) , the propagation weights of mes-
sages from its predecessors(neighbors) are initialized equal
to 1

|N1(i)|+1 . After a number of epochs, some propagation
weights become smaller than 1

|N1(i)|+1 . According to Hy-
pothesis 1, the edges corresponding to these weaken edges
are more likely to be inter-class ones and hence removed by us
randomly. The resulting graph topology is then taken into the
subsequent training. Experimental results reveal that remov-
ing all possible inter-class edges does not always lead to the
improvement. Hence, a probability p is specified for AdaDrop
to control the chance of a potential inter-class edge being re-
moved. The details of AdaDrop are provided in Algorithm.
1.

3. EXPERIMENTS

3.1. Implementation, Datasets & Experimental Setting

DyGCN is built on pytorch sparse1, a third-party PyTorch ex-
tension library for sparse tensors. To incorporate dynamic
propagation matrices, GCNII and JKNet are reimplemented
using pytorch sparse. The official implementation of vanilla
GCN and GCN-LPA along with PyG [13] are adopted in our
experiments. As mentioned before, assigning a differentiable
propagation matrix for each layer is computationally expen-
sive and the resulting model is vulnerable to the overfitting.
Thus, we assume that Lblock consecutive layers share one
common propagation matrix. Furthermore, the L1 regulariza-
tion and weight decay are applied to Ã(ℓ)s and W(ℓ)s, sepa-
rately.

Three standard citation network datasets, namely, Cora,
Citeseer, and Pubmed [14] are used for full-supervised node
classification. Each dataset is randomly split into training,
validation, and test sets according to 6 : 2 : 2. For every
run, one model is trained for 300 epochs by Adam [15] on
training set and the test accuracy when validation accuracy
gets maximized is reported finally.

1https://github.com/rusty1s/pytorch sparse

Algorithm 1: AdaDrop
Input : A L-layer dynamic GCN model gcn, the

feature matrix X; the gold label matrix T;
the adjacency matrix A; the max times of
hard topology optimization K; the drop
rate p ∈ (0, 1]; the training epoches E.

Output : The best model gcnbest and the
corresponding set Sbest of differentiable
adjacency matrices.

Initialize: Denote by S the set of all Ã(ℓ) s in Eq.
A2P . Initialize them with the same
weights and let S0 = {Ã(ℓ)

0 }ℓ=1:L;
accvmax = 0, Sbest = S0, gcnbest = null

1 Function Main() /* the main function

*/
2 for k = 1 to K do
3 accval, Sk, gcnk =

OneRun(gcn, Sk−1,T, E);
4 if accval > accvmax then
5 accvmax = accval;
6 Sbest = Sk ; gcnbest = gcnk;
7 end
8 B=HardTopoOptim(Sk, p);
9 for ℓ = 1 to L parallel do

10 Ã
(ℓ)
k = B̃;

11 end
12 Sk = {Ã(ℓ)

k }ℓ=1:L;
13 end
14 return Sbest, gcnbest

15 end

16 Function OneRun(gcn, S,X,T, E)
/* regular training */

17 Initialize gcn;
18 Fit the model gcn to X,T for E epoches;
19 Load the checkpoint with the best validation

accuracy accval to get optimal gcn∗, S∗;
20 return accval, S

∗, gcn∗

21 end

22 Function HardTopoOptim(S, p) /* drop
less important edges */

23 for ℓ = 1 to L do
24 P(ℓ) =

SparseSoftMax
(

LeakyReLU
(
Ã(ℓ)

))
;

25 end
26 B = 1

L

∑
ℓ P

(ℓ);
27 for i = 1 to N parallel do
28 for j ∈ N1(i) parallel do
29 if Bi,j < 1/|N1(i)| then
30 Set Bi,j = 0 with a probability of p;
31 end
32 end
33 end
34 B = B+BT ;
35 return B

36 end

3.2. Proposed Models & Soft Topology Optimization

To quantify the topology optimization, we choose an index
to reflect the proportion of inter-class edges, which tends to
be low when the topology is optimized for node classification
tasks. Formally, the inter-ratio(IR) of a propagation matrix is
defined:

IR =
w2

w1 + w2
, (13a)

w1 =

N∑
i=1

∑
j∈N1(i)

Pij · |N1(i)|∑
k∈N1(i)

Pik
I (ci, cj) , (13b)

w2 =

N∑
i=1

∑
j∈N1(i)

Pij · |N1(i)|∑
k∈N1(i)

Pik
[1− I (ci, cj)] , (13c)

where w1 and w2 are the global intensities of intra- and inter-
class edges, and I (ci, cj) is an indicator function, whose
value is equal to 1 when ci = cj and 0 otherwise. This metric
consider both edge weights and presence and hence suits for
both soft and hard topology. Another interesting observation
is that a node with a larger neighborhood is more likely to be
misclassified by deep vanilla GCNs [9]. Based on this, for
each target node we scale the associated propagation weights
by the number of predecessors in (13).

The first set of experiments are to support the Hypothesis
1 mentioned earlier. All three models are composed by 4 lay-
ers divided to 2 blocks, each maintaining one common prop-
agation matrix, i.e., P(0) = P(1) = P0, P(2) = P(3) = P1.
They are trained with a fixed learning rate 0.01. Variations
of IR (computed for each propagation matrix) vs epochs are
depicted in Figure 1. Curves of DyGCN, JKNet(Dy) and GC-
NII(Dy) are evaluated on both the subgraph induced by train-
ing nodes and the whole graph. It can be observed that IR
monotonically decreases with the increase of epochs. Fur-
thermore, the variation trend of P1 appears more dramatic,
because it is closer to the output layer of each model.

3.3. Performance Comparison

Following the common setting, classification performance
of various GCN models with different network depth are
evaluated and compared in this subsection. As there is no
public separation of these datasets, we randomly divide each
dataset into 10 splits. For a fair comparison, all the models
are evaluated on each split and the averaging accuracy of each
model is reported in Table 1. When equipped with AdaDrop,
a dynamic model shares the same hyperparameters except the
drop rate p and the max times of hard topology optimization
K. To reveal the influence of network depth, all parame-
ters except L are shared within one group of experiments
(corresponding to one row in Table 1) for a shallow model
(i.e., GCN, GCN-LPA, or DyGCN). In Table 1, DyGCN(Lin)
denotes the variant of DyGCN using the identity activa-
tion function and “AD” indicates the usage of AdaDrop.

Table 1: Classification accuracies (in percentage) of various
models with various depths in full-supervised setting

Dataset Model # of layers employed
2 4 8 16 32

Cora

GCN [1] 87.95 87.55 50.85 29.98 29.98
JKNet(Add)[6] - 86.03 85.87 86.53 86.05
GCN-LPA [11] 87.20 86.62 60.46 31.88 31.22

GCNII [9] - 88.15 88.82 88.78 88.89
DyGCN 89.06 87.93 74.91 28.52 30.06

DyGCN(Lin) 88.80 87.88 86.66 81.66 33.47
DyGCN(AD) 89.28 88.19 85.87 33.75 30.00

JKNet(Dy) - 88.41 87.93 88.06 85.92
JKNet(AD,Dy) - 88.76 88.49 88.14 88.08

GCNII(Dy) - 88.36 88.36 88.89 89.26
GCNII(AD, Dy) - 89.00 88.71 88.71 89.21

Citeseer

GCN 76.08 75.18 53.97 26.07 21.25
JKNet(Max) - 75.17 75.62 75.81 75.42
GCN-LPA 76.37 72.79 27.00 25.35 23.77

GCNII - 76.13 76.67 76.49 76.79
DyGCN 76.20 75.11 73.29 31.98 20.98

DyGCN(Lin) 76.13 74.67 73.86 71.25 41.40
DyGCN(AD) 76.26 75.14 73.42 50.47 27.07

JKNet(Dy) - 75.23 75.93 75.71 75.33
JKNet(AD,Dy) - 75.23 76.08 75.92 75.47

GCNII(Dy) - 76.07 76.89 76.85 77.03
GCNII(AD, Dy) - 76.27 77.21 76.79 76.94

Pubmed

GCN 87.69 85.58 73.67 49.60 39.69
JKNet(Add) - 86.21 86.10 85.99 85.79
GCN-LPA 86.97 85.35 72.24 57.92 55.30

GCNII - 89.68 89.33 89.01 88.85
DyGCN 87.83 85.10 83.66 65.60 39.50

DyGCN(Lin) 87.39 84.99 83.96 82.03 70.27
DyGCN(AD) 87.87 85.15 83.75 80.21 46.81

JKNet(Dy) - 85.74 85.79 85.61 85.41
JKNet(AD,Dy) - 85.92 85.75 85.66 85.63

GCNII(Dy) - 89.90 89.69 89.24 88.97
GCNII(AD, Dy) - 89.94 89.80 89.41 89.27

The baseline JKNets using three aggregation strategies, i.e.,
Concat, Max, and Add, are all tested. But only the result
corresponding to the best strategy is reported in Table 1. For
instance, Max is the best strategy for Citeseer. Hence, JKNet
is marked as JKNet(Max) and JKNet(Dy) also utilizes this
strategy. Regarding to baseline GCNII and GCN-LPA, the
hyperparameters recommended by their authors are taken in
our experiments.

On each dataset, the best result for each L is marked in
bold font. The highest score among all the results is fur-
ther underlined. It can be noticed that DyGCN and its deep
variants generally outperform the baseline models. Impres-
sively, 2-layer DyGCN with AdaDrop reaches the highest
accuracy on Cora, even outperforming those 32-layer deep
models, e.g., JKNet and GCNII. Though shallow DyGCN
and DyGCN(AD) demonstrate competitive performance, the
degradation is significant when they become significantly
deep, just as suggested by Theorem 1. Even so, a deep
DyGCN outperforms a same-layer vanilla GCN or GCN-
LPA noticeably, revealing much more robustness against the
oversmoothing issue. Furthermore AdaDrop can enhance it

such that a 16 or 32-layer DyGCN(AD) exceeds same-layer
DyGCN 5.23% - 18.4% in accuracy. These observations
demonstrate that the proposed models and AdaDrop are ef-
fective to alleviate oversmoothness via optimizing graph
topology. Actually, AdaDrop can enhance all dynamic mod-
els listed here in most cases. Note that since JKNet itself has
robustness to oversmoothness, the experiments of JKNet(Dy)
and JKNet(Dy,AD) are all conducted in an ablation manner.
That is, for one dataset, these models share the same hyper-
parameters except those extra ones required by JKNet(Dy)
and JKNet(Dy,AD). The experiments of GCNII comply with
this setting too.

4. CONCLUSION

It is known that the node classification performance of GCN
highly relies on graph topology. In this paper, we present a
novel dynamic GCN model, which enables effective topol-
ogy optimization including AdaDrop. Although it is theoreti-
cally proven that the output of a deep DyGCN could collapse
into a low-rank space, the resistance of DyGCN to the over-
smoothness is much stronger than vanilla GCN and GCN-
LPA and can be further enhanced via combining the proposed
architecture with some other deep models, e.g., JKNet and
GCNII. To investigate the effectiveness of topology optimiza-
tion, we define the inter-ratio(IR). It is empirically shown that
DyGCN and its deep variants can effectively decrease the IR
scores with the increase of epochs, and achieve superior per-
formance in three citation datasets. The potential future work
includes the design of more effective strategies to resist the
oversmoothing issue and transferring DyGCN and AdaDrop
into other tasks such as graph adversarial learning [16].

5. REFERENCES

[1] Thomas N. Kipf and Max Welling, “Semi-supervised
classification with graph convolutional networks,” 5th
International Conference on Learning Representations,
2017.

[2] Petar Veličković, Arantxa Casanova, Pietro Liò,
Guillem Cucurull, Adriana Romero, and Yoshua Ben-
gio, “Graph attention networks,” 6th International Con-
ference on Learning Representations, 2018.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann Lecun, “Spectral networks and locally connected
networks on graphs,” in International Conference on
Learning Representations, 2014.

[4] William L. Hamilton, Rex Ying, and Jure Leskovec, “In-
ductive representation learning on large graphs,” in Pro-
ceedings of the 31st International Conference on Neural
Information Processing Systems, 2017.

(a) IR(train) on Cora (b) IR(train) on Citeseer (c) IR(train) on Pubmed

(d) IR(all) on Cora (e) IR(all) on Citeseer (f) IR(all) on Pubmed

Fig. 1: IR-epoch curves of DyGCN, JKNet(Dy) and GCNII(Dy) obtained on three citation datasets. The first row presents
experimental results evaluated on training nodes, while the second row consists of curves evaluated on the whole graph.

[5] Kenta Oono and Taiji Suzuki, “Graph neural networks
exponentially lose expressive power for node classifica-
tion,” in International Conference on Learning Repre-
sentations, 2020.

[6] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo-
hiro Sonobe, Ken Ichi Kawarabayashi, and Stefanie
Jegelka, “Representation learning on graphs with jump-
ing knowledge networks,” 35th International Confer-
ence on Machine Learning, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[8] Johannes Klicpera, Aleksandar Bojchevski, and Stephan
Günnemann, “Predict then propagate: Graph neural net-
works meet personalized pagerank,” in 7th International
Conference on Learning Representations, ICLR, 2019.

[9] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding
Ding, and Yaliang Li, “Simple and deep graph convolu-
tional networks,” Proceedings of the 37th International
Conference on Machine Learning, 2020.

[10] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun, “Measuring and Relieving the Over-Smoothing

Problem for Graph Neural Networks from the Topolog-
ical View,” Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2020.

[11] Hongwei Wang and Jure Leskovec, “Unifying graph
convolutional neural networks and label propagation,”
2020.

[12] Sitao Luan, Mingde Zhao, Xiao Wen Chang, and Doina
Precup, “Break the ceiling: Stronger multi-scale deep
graph convolutional networks,” Advances in Neural In-
formation Processing Systems, 2019.

[13] Matthias Fey and Jan Eric Lenssen, “Fast graph repre-
sentation learning with pytorch geometric,” 2019.

[14] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad,
“Collective classification in network data,” AI Maga-
zine, 2008.

[15] Diederik P. Kingma and Jimmy Lei Ba, “Adam: A
method for stochastic optimization,” in 3rd Interna-
tional Conference on Learning Representations, 2015.

[16] Daniel Zügner, Amir Akbarnejad, and Stephan Günne-
mann, “Adversarial attacks on neural networks for graph
data,” Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2018.

	 Introduction
	 Dynamic GCN
	 DyGCN Layer
	 Deep Variants
	 DyGCN & Soft Topology Optimization
	 AdaDrop

	 Experiments
	 Implementation, Datasets & Experimental Setting
	 Proposed Models & Soft Topology Optimization
	 Performance Comparison

	 Conclusion
	 References

